Journal of Organometallic Chemistry, 155 (1978) 185-193
(c) Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

THE VIBRATIONAL SPECTRA AND NORMAL COORDINATE ANALYSIS OF TETRACYCLOPROPYLLEAD

LESZEK CZUCHAJOWSKI, JAN HABDAS, STANISLAW A. KUCHARSKI and KRYSTYNA ROGOSZ
Department of Organic Chemistry, Institute of Chemistry, Silesian University, Szkolna 9, 400-07 Katowice (Poland)

(Received March 13th, 1978)

Summary

All the fundamental frequencies observed in IR and Raman spectra have been assigned to the normal modes of the molecule $\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)_{4} \mathrm{~Pb}\left(\mathrm{C}_{3} \mathrm{H}_{5}=\right.$ cyclopropyl). The calculated force field is compared to that of $\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2} \mathrm{Hg}$ and the C -metal stretching force constants are discussed along with those of $\mathrm{Me}_{4} \mathrm{~Pb}$ and $\mathrm{Me}_{2} \mathrm{Hg}$; The similarity of the spectra of cyclopropyllead and cyclopropylmercury proves that the vibrations of cyclopropyl structural units are isolated in both molecules.

Introduction

The molecular spectra of the cyclopropyl derivatives of Al [1], Ga , In [2] and also Sn and $\mathrm{Hg}[2,3]$, have been studied previously. Tetracyclopropyllead ($\mathrm{Cpr}_{4} \mathrm{~Pb}$), obtained by Juenge and Houscr [4] in 1964, has not yet been investigated by vibrational spectroscopic methods, and so we have examined its IR and Raman spectra, assigned the normal modes, and derived the force field parameters. To aid in the assignments the results of vibrational analysis of dicyclopropylmercury ($\mathrm{Cpr}_{2} \mathrm{Hg}$) and of tetramethyllead $\left(\mathrm{Me}_{4} \mathrm{~Pb}\right)$ have been used.

Experimental

Tetracyclopropyllead was made from cyclopropylmagnesium bromide and PbCl_{2} in THF [4]. It was distilled from the reaction vessel during 50 h at $90^{\circ} \mathrm{C}$, and redistilled at $50^{\circ} \mathrm{C}$ and $10^{-2} \mathrm{mmHg} ; n_{\mathrm{D}}^{20} 1.5510$. Its mass spectrum, measured on an LBK 9000 S spectrometer at 70 eV , showed fragmentation patterns showing the spacing of the groups of lines corresponding to the cyclopropyl molecular weight and the splitting of the four cyclopropyl units: viz. $372,331,290,249$, 208 and 41.

The $1 R$ spectra of the 0.017 mm films were obtained with a Zeiss UR-20 spectrophotometer in the range $4000-400 \mathrm{~cm}^{-1}$, using LiF, NaCl and KBr prisms in the regions $4000-2800,2800-750$ and $740-400 \mathrm{~cm}^{-1}$, respectively. The raman spectra, taken on samples sealed in a capillary tube, were measured on a Cary-82 laser ($4860 \mathrm{~A}, 60 \mathrm{~mW}$) instrument within the range of $4000-0$ cm^{-1} :

Theoretical treatment

The vibrational analysis was based on the standard GF matrix method of Wilson. The $\mathrm{Cpr}_{4} \mathrm{~Pb}$ molecule, containing 33 atoms, has 93 vibrational degrees of freedom, with a symmetry depending on the mutual steric position of the cyclopropyl units, the highest possible symmetry being $D_{2 d}$, corresponding to the ring arrangement shown in Fig. 1. The 89 normal modes are distributed between irreducible representations of the $D_{2 d}$ group according to the formula $\Gamma=13 A_{1}+9 A_{2}+13 B_{1}+10 B_{2}+22 E$. The B_{2} and E representations are IRactive and result in 32 IR-active modes; the A_{1}, B_{1}, B_{2} and E representations ar Raman-active and are reflected in 58 active modes.

Fig. I. The internal coordinates of the $\mathrm{Cpra}_{4} \mathrm{~Pb}$ molecule.

TABLE 1
STRUCTURAL PARAMETERS OF Cpra ${ }_{4} \mathbf{P b}$

Bond	Length (A)	Argle	Degrees
$\mathrm{C}-\mathrm{Pb}$	2.303	$\mathrm{C}-\mathrm{C}-\mathrm{C}$	60
$\mathrm{C}-\mathrm{C}$	1.514	$\mathrm{H}-\mathrm{C}-\mathrm{Pb}$	116.5
$\mathrm{C}-\mathrm{H}$	1.082	$\mathrm{H}-\mathrm{C}-\mathrm{C}$	117.12
		$\mathrm{H}-\mathrm{C}-\mathrm{H}$	116.5

The structural data for $\mathrm{Cpr}_{4} \mathrm{~Pb}$ necessary for constructing the G matrix, listed in Tab. 1 (see also Fig. 1), were derived from the geometric parameters of $\mathrm{Cpr}_{2} \mathrm{Hg}$ and $\mathrm{Me}_{4} \mathrm{~Pb}$ molecules, for the cyclopropyl unit and the $\mathrm{C}-\mathrm{Pb}$ bond. The 36 stretching coordinates, i.e. the 4 stretching $\mathrm{C}-\mathrm{Pb}, 12$ stretching $\mathrm{C}-\mathrm{C}$ and 20 stretching $\mathrm{C}-\mathrm{H}$, as well as the 54 angle deformation coordinates, form the internal coordinates set. The deformational coordinates include 6 deformational $\mathrm{C}-\mathrm{Pb}-\mathrm{C}, 8$ deformational $\mathrm{Pb}-\mathrm{C}-\mathrm{H}$ and 40 deformational $\mathrm{C}-\mathrm{C}-\mathrm{H}$ coordinates. The total of 90 internal coordinates also comprises one redundant coordinate belonging to the set of six of the deformational $\mathrm{C}-\mathrm{Pb}-\mathrm{C}$ type. The choice of coordinates for the cyclopropyl unit was made as before [5] and in a manner very similar to that used by Duncan in his work on cyclopropane [6]. The numbering of internal coordinates and their relations with the symmetry coordinates are shown in Fig. 1 and in Tab. 2.

The choice of the force field was made as follows. For the initial force field of the cyclopropyl ring the values estimated for $\mathrm{Cpr}_{2} \mathrm{Hg}$ [5] were used these are similar to those used by Duncan [6] for cyclopropane. The force field for the structural fragment containing the Pb centre was taken to be the same as that in $\mathrm{Me}_{4} \mathrm{~Pb}$ [7], the calculations were performed using the authors' VIBRAN program written for the ODRA-1204 computer.

The results of calculations of the initial force field are listed in Tab. 4. To achieve better agreement with the experimental data a convergence of the theoret-

TABLE 2
SYMMETRY COORDINATES OF Cpra Pb
The symbols of the internal coordinates relate to Fig. 1.

s_{1}	$D a \mp D b \mp D c \mp D d$
s_{2}	$D_{1 a} \mp D_{1 b} \mp D_{1 c} \mp D_{1 d} \mp D_{2 a} \pm D_{2 b} \mp D_{2 c} \mp D_{2 d}$
s_{3}	
s_{4}	$d_{5 a}{ }^{\mp} d_{5 b}{ }^{\mp} d^{+}{ }_{5 c}{ }^{\mp} d_{5 c}$
s_{5}	$d_{6 a} \mp d_{6 b} \mp d_{6 c}+d_{6 d} \mp d_{8 d} \mp d_{8 b} \mp d_{8 c} \mp d_{8 d}$
s_{6}	$d_{7 a} \mp d_{7 b} \mp d_{7 c} \pm d_{7 d} \mp d_{9 a} \mp d_{9 b} \mp d_{9 c} \mp d_{9 d}$
s_{8}	$\delta_{3} \mp \delta_{4} \mp \delta_{5} \mp \delta_{6}$
sg	
$s 10$	
s_{11}	
s_{12}	$t_{3 c} \mp t_{3 b} \mp t_{3 c} \mp t_{3 d} \pm t_{4 a} \pm t_{4 b} \mp t_{4 c} \mp t_{4 d}$
s_{13}	$w_{3 a} \mp w_{3 b} \mp w_{3 c} \mp w_{3 d} \mp w_{4 a} \mp w_{4 b} \pm w_{4 c} \mp w_{4 d}$
s_{14}	

TAELE 3
EXPERIMENTAL AND CALCULATED FREQUENCIES FOR THE CPX 4 Pb MOLECULE $D_{2 d}\left(\mathrm{~cm}^{-1}\right)$ AND THEIR POTENTIAL ENERGY DISTRIBUTION VALUES

TABLE 3 (contínued)

Experimental		Calculated			PED values
Raman	IR	Initial	Final	Sym.	
460	458	385	458	B_{2}	61s ${ }_{1}$, 30s9
460	440	380	455	E	57s, 35s9
441	-	368	431	A_{1}	61si, 31sg
270	-	211	244	A_{1}	75 s \%
256		219	226	B_{2}	$56 s_{9}$
225		211	224	E	62s9, $33 s_{1}$
-	-	135	131	A_{2}	$47 s_{9,} 44 s_{10}$
196		147	116	E	58s, ${ }^{\text {g }}$ 24s
	-	153	98	B_{1}	825s
	-	67	58	B_{1}	$52 s_{10}, 36 s_{8}$
		51	56	B_{2}	55s ${ }_{7}$, 41s ${ }_{8}$
		57	53	E	545s. 2559
	-	55	50	\boldsymbol{A}_{1}	8757

ical and experimental frequencies was carried out. A modification of some force constants was allowed, particularly of those most susceptible to perturbation (see the procedure described in ref. 5). The iteration was ended when the rate of convergence appeared to be negligible at an acceptable level of change in the force constants. The frequency values for the final force field parameters are listed in Tab. 3. The L matrix elements and the PED values were used to interpret the respective frequencies, the latter being given for the most characteristic symmetry coordinates.

Results and discussion

In spite of the large number of degrees of freedom, because of the high symmetry of the $\mathrm{Cpr}_{4} \mathrm{~Pb}$ molecule, the Raman and IR spectra are very clear; they show only a limited number of bands, about 20 in both types of the spectrum. This corresponds approximately to the number of modes in one cyclopropyl unit, and proves that the corresponding frequencies in the various cyclopropyl rings have the same value. A similar feature was observed in the spectra of $\mathrm{Cpr}_{2} \mathrm{Hg}$ [5]. Both the IR and Raman spectra of $\mathrm{Cpr}_{4} \mathrm{~Pb}$ and $\mathrm{Cpr}_{2} \mathrm{Hg}$ show strong similarity, which can be explained by assuming: (i) a very limited influence of the metal atom on the vibrations of the cyclopropyl group and/or (ii) a lack of interaction between the cyclopropyl rings. The latter case would result in the remarkable similarity between the spectra of the molecules containing two and four cyclopropyl rings. One would then expect that for $\mathrm{Cp}_{4} \mathrm{~Pb}$ every observed band corresponds to four normal modes.
$C-H$ stretching vibrations. In the region of ca. $3000 \mathrm{~cm}^{-1}$, the four well shaped bands having almost the same frequencies in Raman and in IR: appear at 3066, 2998, 2907, $2862 \mathrm{~cm}^{-1}\left(3067,3003,2900,2863 \mathrm{~cm}^{-1}\right.$, the IR frequencies are always given in parentheses, unless otherwise stated). The $3066 \mathrm{~cm}^{-1}$ band contains a shoulder on its iongwave side, while the ($2863 \mathrm{~cm}^{-3}$) band, in more precise measurements was found to be a doublet. The twenty C-H normal modes are expected in this region, as they are arranged in five groups corresponding to
TABLE 4
VALENCE FORCE FIELD CONSTANTS FOR THE CPY 4 PB MOLECULE

Dlagonal			Interaction			Interaction		
Stretching (mdyn/ \AA)			Stretching-bending (mdyn)			Bending-bonding (ors $\times 10^{-11}$)		
Type of force const.	Initial	Final	Type of force const.	Initial	Final	Typo of force const.	Inital	Final
$\mathrm{C}-\mathrm{Pb}$	1.9000	1.9531	C-Pu/CPbC	0.2000	0.1332	$C(2 a) P b C(2 b) / C(2 a) P b C(2 a)$	0,0500	0.0511
$\mathrm{C}(2)-\mathrm{C}(3)$	4.2900	4.0959	C-Pb/CPbC	0,0500	0.0511	$\mathrm{C}(2 \mathrm{a}) \mathrm{PbC}(2 b) / \mathrm{C}(2 \mathrm{a}) \mathrm{PbC}(2 \mathrm{~b})$	0.0500	0.0536
$\mathrm{C}(2)-\mathrm{H}(5)$	6.1700	4.8575	$\mathrm{C}-\mathrm{Pb} / \mathrm{PbCC}$	0.2500	0.1958	$\mathrm{C}(2 \mathrm{a}) \mathrm{Pb} \mathrm{C}(2 \mathrm{~b}) / \mathrm{PbC}$ (2)C(3)	0.0500	0,0800
$\mathrm{C}(3)-\mathrm{C}(4)$	4.2007	4.1165	$\mathrm{C}(2)-\mathrm{H}(5) / \mathrm{H}(5) \mathrm{C}(2) \mathrm{C}(3)$	0.3200	0,3582	$\mathrm{C}(2 \mathrm{c}) \mathrm{PbC}(2 \mathrm{~d}) / \mathrm{H}(5) \mathrm{C}(2) \mathrm{C}(3)$	0.0000	-0.0044
$\mathrm{C}(3)-\mathrm{H}(6)$	5.1675	5.2106	$\mathrm{C}(2) \mathrm{C}(3) / \mathrm{H}(6) \mathrm{C}(3) \mathrm{C}(2)$	0,3200	0.4198	$\mathrm{PbC}(2) \mathrm{C}(3) / \mathrm{HL}(5) \mathrm{C}(2) \mathrm{C}(3)$	0.1000	0.2641
			$\mathrm{C}(3)-\mathrm{C}(4) / \mathrm{H}(6) \mathrm{C}(3) \mathrm{O}(4)$	0.3166	0.3160	$\mathrm{PbC}(2 \mathrm{a}) \mathrm{C}(3 \mathrm{a}) / \mathrm{PLCO}(2 \mathrm{~b}) \mathrm{C}(3 \mathrm{~b})$	0.0000	0,0005
Bending (erg X 10^{-11})			$\mathrm{C}(2)-\mathrm{C}(3) / \mathrm{H}(5) \mathrm{C}(2) \mathrm{C}(4)$	-0.0600	0,0502	$\mathrm{PbC}(2) \mathrm{C}(3) / \mathrm{H}(5) \mathrm{C}(2) \mathrm{C}(3)$	0.0500	0.1980
			$\mathrm{C}(2)-\mathrm{C}(3) / \mathrm{H}(8) \mathrm{C}(3) \mathrm{C}(4)$	-0.0584	-0.0584	$\mathrm{PbC}(2) \mathrm{C}(3) / \mathrm{H}(6) \mathrm{C}(3) \mathrm{C}(2)$	0.0500	-0,0104
$\mathrm{H}(5) \mathrm{C}(2) \mathrm{C}(3)$	0.8400	0.7950	$\mathrm{C}(3)-\mathrm{C}(4) / \mathrm{H}(6) \mathrm{C}(3) \mathrm{C}(2)$	-0.0584	-0.0584	$\mathrm{PbC}(2) \mathrm{C}(3) / \mathrm{H}(5) \mathrm{C}(2) \mathrm{C}(1)$	0.0000	0,0100
$\mathrm{H}(6) \mathrm{C}(3) \mathrm{C}(2)$	0.8400	0.8986	$\mathrm{C}(2)-\mathrm{C}(3) / \mathrm{H}(8) \mathrm{C}(4) \mathrm{C}(2)$	-0.0700	-0,1089	$\mathrm{PbC}(2) \mathrm{C}(3) / \mathrm{H}(8) \mathrm{C}(4) \mathrm{C}(2)$	0.0000	0.0100
CPLOC	0,3000	0.2925	$\mathrm{C}(2)-\mathrm{C}(3) / \mathrm{H}(8) \mathrm{C}(4) \mathrm{C}(3)$	-0,0879	-0.0679	$\mathrm{PbC}(2) \mathrm{C}(3) / \mathrm{H}(7) \mathrm{C}(2) \mathrm{C}(4)$	0.0000	-0,0060
PbCC	0.4000	0.4560	$\mathrm{O}(3)-\mathrm{C}(4) / \mathrm{H}(5) \mathrm{C}(2) \mathrm{C}(3)$	-0.0679	-0.0679	$\mathrm{PbC}(2) \mathrm{C}(3) / \mathrm{H}(9) \mathrm{C}(4) \mathrm{C}(3)$	0,0000	0.0080
$\mathrm{H}(6) \mathrm{C}(3) \mathrm{C}(4)$	0.8388	0.0001	$\mathrm{C}(2)-\mathrm{H}(5) / \mathrm{H}(0) \mathrm{C}(2) \mathrm{C}(3)$	-0.0400	0.0197	$\mathrm{H}(5) \mathrm{C}(2) \mathrm{C}(3) / \mathrm{H}(5) \mathrm{C}(2) \mathrm{C}(4)$	-0.1700	0.0497
			$\mathrm{C}(3)-\mathrm{HI}(6) / \mathrm{H}(8) \mathrm{C}(3) \mathrm{C}(2)$	-0.0363	-0,0363	$\mathrm{H}(8) \mathrm{C}(3) \mathrm{C}(2) / \mathrm{H}(7) \mathrm{C}(3) \mathrm{C}(2)$	-0,0861	-0.0661
Intoraction			$\mathrm{C}(3)-\mathrm{H}(6) / \mathrm{H}(7) \mathrm{C}(3) \mathrm{C}(2)$	-0.0363	-0,0363	$\mathrm{H}(8) \mathrm{C}(3) \mathrm{C}(4) / \mathrm{H}(7) \mathrm{C}(3) \mathrm{C}$ (4)	0.1658	0.1058
			$\mathrm{C}(2)-\mathrm{H}(5) / \mathrm{H}(6) \mathrm{C}(3) \mathrm{C}(2)$	0.0521	0.0521	$\mathrm{H}(6) \mathrm{C}(3) \mathrm{C}(4) / \mathrm{H}(8) \mathrm{C}(4) \mathrm{C}(3)$	-0,0661	-0.0661
Strotching - ${ }^{\text {aretching (}}$ mdyn $/ \AA$)			$\mathrm{C}(3)-\mathrm{H}(6) / \mathrm{H}(6) \mathrm{C}(2) \mathrm{C}(3)$	0.0521	0,0621	$\mathrm{H}(6) \mathrm{C}(3) \mathrm{C}(2) / \mathrm{H}(6) \mathrm{C}(3) \mathrm{C}(4)$	-0,1700	-0.1700
$\mathrm{C}-\mathrm{Pb} / \mathrm{C}-\mathrm{Pb}$	0.1500	0.1396	$\mathrm{C}(3)-\mathrm{H}(6) / \mathrm{H}(5) \mathrm{C}(2) \mathrm{C}(4)$	-0.0521	-0.0521	$\mathrm{H}(5) \mathrm{C}(2) \mathrm{C}(3) / \mathrm{H}(8) \mathrm{C}(3) \mathrm{C}(4)$	0.0386	0.0356
$\mathrm{Pb}-\mathrm{C} / \mathrm{C}(2)-\mathrm{C}(3)$	0.1000	0.1742	$\mathrm{C}(2)-\mathrm{C}(3) / \mathrm{PbC}(2) \mathrm{C}(3)$	0.2000	0.2267	$\mathrm{H}(5) \mathrm{C}(2) \mathrm{C}(3) / \mathrm{H}(8) \mathrm{C}(4) \mathrm{C}(3)$	0.0114	0,0114
$\mathrm{C}(2)-\mathrm{C}(3) / \mathrm{C}(2)-\mathrm{C}(4)$	-0.1500	-0.0275	$\mathrm{C}(2)-\mathrm{C}(3) / \mathrm{H}(5) \mathrm{C}(2) \mathrm{C}(3)$	0.0000	-0.0100	$\mathrm{H}(5) \mathrm{C}(2) \mathrm{C}(3) / \mathrm{H}(8) \mathbf{C}(4) \mathrm{C}(2)$	0.0356	0.0366
$\mathrm{C}(2)-\mathrm{C}(3) / \mathrm{C}(3)-\mathrm{C}(4)$	-0.1483	-0.1166	$\mathrm{C}(3)-\mathrm{C}(4) / \mathrm{Pb}$ (2) $\mathrm{C}(3)$	0.0000	-0,0060	$\mathrm{H}(6) \mathrm{C}(3) \mathrm{C}(2) / \mathrm{H}(7) \mathrm{C}(3) \mathrm{C}(4)$	0.1650	0.1650
$\mathrm{C}-\mathrm{Pb} / \mathrm{C}(2)-\mathrm{H}(\mathrm{6})$	0.0300	0,0348	$\mathrm{C}(2)-\mathrm{H}(5) / \mathrm{Pb} \mathbf{C}(2) \mathrm{C}(3)$	0.0000	-0,0100	$\mathrm{H}(6) \mathrm{C}(3) \mathrm{C}(2) / \mathrm{H}(8) \mathrm{C}(4) \mathrm{C}(2)$	0.0114	0.0114
$\mathrm{C}(2)-\mathrm{C}(3) / \mathrm{C}(2)-\mathrm{H}(5)$	0.0900	0.1906	$\mathrm{C}(2)-\mathrm{H}(6) / \mathrm{Pb} \mathbf{C}(2) \mathrm{C}(3)$	0.0000	-0,0100	$\mathrm{H}(6) \mathrm{C}(3) \mathrm{C}(2) / \mathrm{H}(8) \mathrm{C}(4) \mathrm{C}(3)$	0.0356	0.0856
$\mathrm{C}(2)-\mathrm{C}(3) / \mathrm{C}(3)-\mathrm{H}(6)$	0,0948	0.3728	$\mathrm{C}(3)-\mathrm{H}(6) / \mathrm{H}(5) \mathrm{C}(2) \mathrm{C}(3)$	0.0000	-0,0100			
$\mathrm{C}(3)-\mathrm{C}(4) / \mathrm{C}(3)-\mathrm{H}(6)$	0.0948	0.2636	$\mathrm{Pb}-\mathrm{C} / \mathrm{H}(\mathrm{B}) \mathrm{C}(2) \mathrm{C}(3)$	0.0000	-0,0100			
$\mathrm{C}(2)-\mathrm{H}(5) / \mathrm{C}(3)-\mathrm{H}(6)$	0.0370	0.0370	$\mathrm{Pb}-\mathrm{C} / \mathrm{H}(6) \mathrm{C}(3) \mathrm{C}(2)$	0.0000	0.0063			
$\mathrm{C}(2)-\mathrm{H}(5) / \mathrm{C}(3)-\mathrm{H}(7)$	-0,0033	-0,0033	$\mathrm{Pb}-\mathrm{C} / \mathrm{H}(6) \mathrm{C}(3) \mathrm{C}(4)$	0.0000	0.00076			
$\mathrm{C}(8)-\mathrm{H}(6) / \mathrm{C}(4)-\mathrm{H}(8)$	0.0370	0.0370						
$\mathrm{C}(3)-\mathrm{H}(6) / \mathrm{C}(3)-\mathrm{H}(7)$	0.0870	0,0082						
$\mathrm{C}(3)-\mathrm{H}(6) / \mathrm{C}(4)-\mathrm{H}(9)$	-0.0033	-0.0033						
$\mathrm{C}(2)-\mathrm{C}(3) / \mathrm{C}(4)-\mathrm{H}(8)$	0,0000	0,0000						

the $\mathrm{C}-\mathrm{H}$ modes of the cyclopropyl unit. The shift of some bands towards lower frequencies, by ca. $150 \mathrm{~cm}^{-1}$ with respect to cyclopropane, is almost the same as with $\mathrm{Cpr}_{2} \mathrm{Hg}$. The vibrational analysis of the species in question alone is of no help in assigning a shifted band to a mode of the proper $\mathrm{C}-\mathrm{H}$ bonds. It seems, however, that the bond most susceptible to perturbation is $\alpha-\mathrm{CH}$, with its vibrations ascribed to the lowest band, i.e. to 2862 (2863) cm^{-1}. The mode in question is isolated, so it does not mix with the modes of other $\mathrm{C}-\mathrm{H}$ bonds remaining within the cyclopropyl unit. Some authors $[2,8]$ consider this as an overtone of the $1430 \mathrm{~cm}^{-1}$ band, but its intensity seems much too high for this.
$\boldsymbol{C}-\boldsymbol{H}$ deformational and $C-C$ skeletal vibrations. The highest frequency in this region corresponds to the scissoring motion of CH_{2} in cyclopropane. All $\mathrm{Cpr}_{4} \mathrm{~Pb}$ frequencies above $1400 \mathrm{~cm}^{-1}$ have therefore been identified as scissoring. The frequency at 1458 (1461) cm^{-1} originates in their symmetric combination; when one takes into account the two CH_{2} groups in the cyclopropyl unit, scissoring contributes ca. 40%, with the lower frequency, at 1437 (1439) cm^{-1}, corresponding to their asymmetric combination. In the former band the α - CH deformation mode also participates with a significance value of 40%. The next band, at 1229 (1232) cm^{-1}, is assigned to the mode composed of both the deformational symmetrical $\alpha-\mathrm{CH}$ bond mode and the deformational vibrations of the $\beta-\mathrm{CH}_{2}$ groups, the former being predominant. It is noteworthy that every experimental maximum corresponds to the four normal modes which represent the same frequency, two of them degenerate as a result of symmetry. The next band observed at 1193 (1190) cm^{-1} presents a purely skeletal stretching vibration,

Fig. 2. The IR and Raman spectra of $\mathrm{CPr}_{4} \mathrm{~Pb}$.
contribution being as much as 91%. The characteristic feature of the cyclopropyl unit vibrations is the absence of well separated twisting modes. Usually these twisting modes participate in the other deformation modes of the CH_{2} group, i.e., in those of the wagging and rocking type; they also mix with those of the deformational type involving the $\alpha-\mathrm{CH}$ bond. Such a feature is also typical of the ($1105 \mathrm{~cm}^{-1}$) band, as its vibrations show a significant contribution not only of twisting modes but also of $\alpha-\mathrm{CH}$ deformations. The latter do not exhibit any characteristic frequency either, but usually mix with other deformational modes. The next bands appearing both in Raman and in IR, at 1053 (1057) cm^{-1} and at 1028 (1031) cm^{-1}, are interpreted mainly as the wagging modes. The neighbouring 994 (998) cm^{-1} band is highly delocalized over the entire cyclopropyl ring and corresponds to the wagging, twisting and rocking modes, participating in 22,25 and 30%, respectively. The $862(870) \mathrm{cm}^{-1}$ band exhibits the character of the deformational skeletal mode of the cyclopropyl ring; a similar mode in $\mathrm{Cpr}_{2} \mathrm{Hg}$ appears at a slightly lower frequency, i.e. at $835 \mathrm{~cm}^{-1}$. The range near $800 \mathrm{~cm}^{-1}$, which contains the two bands at $812(813) \mathrm{cm}^{-1}$ and 784 (790) cm^{-1}, is typical of the rocking modes, although these of the skeletal deformational type also participate in it to some extent.

The bands in the $1450-750 \mathrm{~cm}^{-1}$ region, show no frequencies representing a higher degree of character distinction. The calculations show that the higher frequency modes refer to scissoring, while those of the lowest frequency relate to the rocking modes, very much as in the cyclopropane molecule.

The skeletal modes of the $\mathrm{Pb}(\mathrm{C})_{4}$ structural fragment. In this region no accidental degeneration of frequency, so common in the region containing characteristic cyclopropyl unit frequencies, was observed. The interactions among the internal coordinates of the $\mathrm{Pb}(\mathrm{C})_{4}$ fragment, both kinetic and dynamic, are strong enough to cause the splitting of the band. Particular attention should be paid to the intense band at 441 (458) cm^{-1}. It shows an absorption shoulder both in the Raman and in IR which allow observation of the two $\mathrm{C}-\mathrm{Pb}$ stretchin modes which helps in drawing conclusions regarding the symmetry of the $\mathrm{Cpr}_{4} \mathrm{~Pb}$ molecule. The region under consideration also includes the deformational modes of the $C-C-P b$ angle, with the 8 coordinates corresponding to the 8 normal modes of the frequencies calculated between 244 and $100 \mathrm{~cm}^{-1}$. The four maxim were observed in this region experimentally, three of them belonging to the same broad band; the possibility could not be excluded, therefore, that this region might, contain some additional maxima as well. Unfortunately we have no experimental IR data for this region. The assignment of Raman bands to the proper normal modes is difficult. Assuming $D_{2 d}$ symmetry, the modes allowed in this region were as follows: $244,226,224$ and $116 \mathrm{~cm}^{-1}$. Torsional modes should appear there as well, arising from both the rotation of the cyclopropyl rings around the $\mathrm{C}-\mathrm{Pb}$ bonds and the $\mathrm{C}-\mathrm{Pb}-\mathrm{C}$ angle deformation. The frequencies of the latter are similar to those in $\mathrm{Cpr}_{2} \mathrm{Hg}$ [5] below $100 \mathrm{~cm}^{-1}$. Although it was easy to interpret the observed maxima in the range above $300 \mathrm{~cm}^{-1}$ for the mercury compound, it was much more difficult in the case of the $\mathrm{Cpr}_{4} \mathrm{~Pb}$ molecule. The corresponding assignments, presented above, are this to some extent hypothetical.

The force field. Of the 78 force constants introduced, 48 were kept constant and equal to the corresponding values for the cyclopropane molecule. After
modification the force constants have values rather close to those in the initial stages, confirming the correct choice of the stretching force field.

Most conspicuous is the change in the $\alpha-\mathrm{CH}$ stretching force constant. In cyclopropane it is equal to 5.217 mdyn $/ \AA$, the same value characteristic in $\mathrm{Cpr}_{4} \mathrm{~Pb}$ with the β-CH bond. However, in the case of $\alpha-\mathrm{CH}$ it decreases to $4.858 \mathrm{mdyn} / \AA$. Modification in the stretching force constant of the $C-C$ bond adjacent to $\mathrm{C}-\mathrm{Pb}$ also appeared necessary, since it was 4.096 mdyn/A, compared with 4.291 mdyn! A for cyclopropane. The decrease in the stretching force constant of the $C-C$ bond opposite to the $\alpha-C$ atom was not as marked, $f=4.117 \mathrm{mdyn} / \AA$. Changes also appear in the diagonal force constants for the angle coordinates $\mathrm{C}-\mathrm{C}_{\alpha}-\mathrm{H}$ when compared with those corresponding to $\mathrm{C}-\mathrm{C}_{\beta}-\mathrm{H}$ and to cyclopropane. 'The respective values are: $0.795,0.898$ and $0.840 \mathrm{mdyn} / \AA$.

The $\mathrm{C}-\mathrm{Pb}$ bond interacts with only one adjacent $\mathrm{C}-\mathrm{H}$ bond and with the three $\mathrm{C}-\mathrm{C}$ bonds. The respective values are: 0.035 (with CH), 0.179 (with adjacent CC), and $-0.007 \mathrm{mdyn} / \AA$ (with opposite CC). The initial stretching $\mathrm{C}-\mathrm{Pb}$ force constant, $1.900 \mathrm{mdyn} / \AA$, had to be modified to $1.953 \mathrm{mdyn} / \AA$. It then became higher than the corresponding force constant in the $\mathrm{Me}_{4} \mathrm{~Pb}$ molecule by 0.053 . The values for $\mathrm{Cpr}_{2} \mathrm{Hg}$ and $\mathrm{Me}_{2} \mathrm{Hg}$ [7] are equal to 2.091 and $1.920 \mathrm{mdyn} / \AA$. Assuming that the value of the force constant is related to the bond strength, the latter would increase for the compounds under consideration in the following order: $\mathrm{Me}_{4} \mathrm{~Pb}<\mathrm{Me}_{2} \mathrm{Hg}<\mathrm{Cpr}_{4} \mathrm{~Pb}<\mathrm{Cpr}_{2} \mathrm{Hg}$.

The force constants referring to the interaction between the stretching C -metal-C-metal coordinates, and to the interaction of the latter with the bending C-metal- C coordinates, should also be mentioned. Their values for the cyclopropyl derivatives of lead are, respectively, $0.137 \mathrm{mdyn} / \AA, 0.133 \mathrm{mdyn}$ (for that of mercury: $0.075 \mathrm{mdyn} / \AA$ and 0.00 mdyn [5]). The $\mathrm{C}-\mathrm{Pb}$ bond appears to be less covalent in the $\mathrm{Cpr}_{4} \mathrm{~Pb}$ molecule than is the $\mathrm{C}-\mathrm{Hg}$ bond in $\mathrm{Cpr}_{2} \mathrm{Hg}$, taking into account the corresponding stretching force constants. The more limited stability of the former compound supports this opinion. A quantum chemical analysis of this problem would be useful and, although the necessity of considering the participation of the d - and f-type orbitals of the metal creates difficulties the calculations are now in progress in this laboratory.

Acknowledgement

This research was supported by the Polish Academy of Sciences as part of the MR.I-9 program: we greatly appreciate this aid.

References

1 D.A. Sanders and J.P. Oliver, J. Amer. Chem. Soc., 90 (1968) 5910.
2 K. Margiolis and K. Dehnicke, J. Organometal. Chem., 33 (1971) 147.
3 P.A. Scherr and J.P. Oliver, J. Mol. Spectrosc., 31 (1969) 109.
4 E.C. Juenge and R.D. Houser, J. Org. Chem., 29 (1964) 2040.
5 L. Czuchajowski. J. Habdas, S.A. Kucharshi and K. Rogosz, Bull. Acad. Polon. Sci., Ser. Sci. Chim., 26, no. 6 (1978).
6 J.L. Duncan and G.R. Burns, J. Mol. Spectrosc., 30 (1969) 253.
7 L. Czuchajowski, J. Habdas and S.A. Kucharski, Commun. Ann. Meeting Polish C̈hem. Soc., Gliwice, 1972 , and unpublished results.
8 J. Müller, K. Margiolis and K. Dehnicke, J. Organometal. Chem., 46 (1972) 219.

